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Tensor Methods (1)
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Jennrich’s algorithm has good theoretical
properties

In noiseless setting, it is guaranteed to exactly recover the factors if they satisfy the conditions (1-3)

If the tensor T' has small noise T’ = T + E, we can prove that Jennrich’s algorithm is numerically stable
(i.e., the output erroris « ||E||)

The ugly truth: it’s not a good idea to run Jennrich’s algorithm in practice
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Jennrich’s algorithm is not very noise robust
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Jennrich’s algorithm is not computationally
efficient

Bottleneck steps of Jennrich’s algorithm:

Set

M, = a;T(:,:,i) and M, := b;T(:,:,i) 0(d3) — 0(d?)
2 2

i€[d]

Compute A := M;M; and B := (M M,)T

Let ti4, ..., Uiy be eigenvectors of A with eigenvalues 14, ..., A

Suppose T = E|x®3]. Then, M, = E[{a, x)xx ] is computable in 0(d?) time
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Jennrich’s algorithm is not computationally
efficient

Bottleneck steps of Jennrich’s algorithm:

Set
M, = z a;T(:,:,i) and M, = z b;T(:,:,1) 0(d3) — 0(d?)
ie[d] ie[d]
Compute A := M ,M;' and B := (M M,)"
P a'™b ( a b) } O(dw) or O(d?))
Let ti4, ..., Uiy be eigenvectors of A with eigenvalues 14, ..., A

w =~ 2.371 is the fast matrix

multiplication exponent
The bottleneck comes from dense matrix operations (Alman et al. 2024)
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Today’s plan

We'll explore the iterative methods that heuristic tensor decomposition algorithms build upon:
- Gradient descent
- Power iteration

- Alternating minimization

For simplicity, let’s assume T is a symmetric 3-tensor:

T = Z ALiu; @ u; Q y;
i€[k]

where u; € R? are orthonormal vectors

At the end of this lecture, we’ll see how to remove the orthogonality assumption

September 2, 2025 5



Gradient descent

Consider the following polynomial optimization problem:

|a= p(x) = z Tape XaXpxe = T(x,x,x) = Z’l (uj, x)°

a,b,c

We assume {u;} are orthonormal
In this case, you can show that {u;} are exactly the local maximizers of p(x) over $¢~1

> Whenx =~ u;: p(x) = A;{u;, x)3 = 1; >0 (homework)

> Whenx Lu; Vi€ [k]: p(x) =0
Gradient ascent:

xt=xt7"1+1n- - Vp(x)
xt714+3n-T(G,x, %) T(,x,x)q = 2 TapcXpXc
b,c
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(Riemannian) Gradient descent

xttl = proj(xt + 3n - T(:,xt,xt))
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(Riemannian) Gradient descent

xt*1 = proj(xt 4+ 3n - T(:, x4, xt))
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(Riemannian) Gradient descent

xttl = proj(xt + 3n-11- T(:,xt,xt))

Let [T := I — x*(x") T be the
projection to tangent space
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(Riemannian) Gradient descent

xttl = proj(xt + 3n-11- T(:,xt,xt))

Let [T := I — x*(x") T be the
projection to tangent space
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(Riemannian) Gradient descent

If we take n :=

Tensor generalization of the matrix power method for finding top eigenvalue!
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xt*1 = proj(xt 4+ 3n - 11 - T(:, x5, x%))

1
3p(xt)

= proj(xt +3n - (I = x*(x)T) - T(:, x5, xY))

abc

X430 7Gxt x0) =3x8 ) () Tape(¥)a (6

= proj(xt +3n-T(C,x%xt) —3n - xt- T(xt,xt,xt))

as the step size, p(x")
( )
) (TG, x5 xb) T(,xtxt)
xt*1 = proj - = —
p(xt) T, xt, x|
\ J

15

|



Matrix power method

Let M = Zi/liui ® U; (E uiuiT)
Let x° = Y, a; ou; be the initial point

Matrix power method update rule:

Mxt _
S Ml proj(M(:,x"))

We can track the correlations of x¢ and each eigenvector u;:

1 A;

t l
a;+ = {(x"u;) = E Adia;—(u;, u;) = a;4_
Lt ( l) ”Mxt_lll . el B2 1( l ]) ”Mxt_lll L,t—1
j

2 t
ait /11' ait-1 . (L’) Ajt—2 L </1i> 40 -0 if ﬁ <1
— = A4

ait M ait—1 M a1 t—2 M aio

Exponential (“linear”) convergence
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Tensor power method

Let T = Ziliui ® U ® Ui
Let x° = Y}; a; gu; be the initial point

Tensor power method update rule:
T(G,xt xb)
ITC,xt, x|

Track the the correlations of x* and each orthonormal factor u;:

o= (xt ) = 1 Law{xt™1u)? ,u
B [ O P ] 7T
_ Aiaiz,t—l
TG, x|

xttl = proj(T(:,xt,xt)) =
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Tensor power method

2
Q- = AiQit_4
it = — —
ITC,xt1, x|
- We also compute the ratio:
2 1+2 272 142442171 2t
Qe A Qi1 <Ai> <ai,t—2) L <Ai> <ai,0>
— > == —...=[2
ajr A ait—1 A4 a1,t-2 A4 a1,0
Laio\: A
- : A .
1,0 1 . aio
= -0 if ——<1
Maio) A A1aq0

doubly exponential (“quadratic”) convergence

Aiai,o

- However, the probability that max < 1 for a random initial pointis ~ 1/k

i#1 A a1,0

- But we can just use the above to argue we converge to whichever u; maximizes 4;q; o
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Tensor power method

How to find the remaining factors?

Deflation
Run tensor power method to find one factor i;
The coefficient A; = p(i1;) = T (1;, 1, U;)

letT « T —p(i1)i; Q 1; @ 1ii;, repeat

Clustering

Use different random initial points to run tensor power method
Let 44, ..., U, be the outputs

Run a clustering algorithm to estimate u4, ..., Uy
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Alternating least squares (ALS)

View tensor decomposition as a pure optimization problem:

T — Z i; @ U; ®1U;
1€[K]

In each iteration, we fix two dimensions and optimize the remaining one:

2

_min
Uuq,.., Uk

F

l

2
fif*! = proj( argmin ||T — 2 i @4 ® 4;
{u;} i€[k] F

Y
just a least-squares regression

Hard to analyze, but very powerful in practice.

September 2, 2025 20



Rank-1 ALS is tensor power method

arg m,in”T — U ® ﬁt ® ﬁt”IZ? — arg m,iHZ(Tabc _ (ﬁ)a(ﬁt)b(ﬁt)c)z
u u

abc

- argmmz 2 2T e () (@9 (@5, + (@)2(B5)2 (11F)?2

abc

= argminz ~2(2), Z e (@) (@), + ()2 th)b(ut)z

= arg mlnz —2(),T(C,a%ah) + ()5

Therefore, the lease-squares solution is 1 = T(;, 0if,0it), and

1 = proj(T(:,at,4%))

Tensor power method update rule
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Removing the orthogonality condition

In our previous discussions, we assume that T = );; 4;u; ® u; @ u; and {u;} are orthonormal vectors. What
if they are non-orthogonal but only linearly independent?

We’ll see two solutions:

1.  Whitening

2. Directly analyzing the tensor power method for non-orthogonal factors
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Whitening

In many practical applications, we not only get access to T, but also to the following matrix:

M = Z )liuiuiT
[

We can do the following procedure to orthogonalize the factors:

Let M = VDV be the eigendecomposition of M, where V € R%*¥ and D € RF*¥
Define W := VD~1/2 and #i; := /W Tu; € R¥
Then, we can check that

k k
Zaiaj = ZAiWTuiuiTW =WTMW = D~ Y2yTypyTyp-1/2 = p~1/2pp-1/2 = |
=1 =1

It implies that {i; } are orthonormal
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Whitening

{i1; = \[4;WTw;} are orthonormal
Define a new tensor T’ := T(W, W, W) € R¥*¥**K sych that

Tape = Z Tarp' e WaraWppyWere  Va,b,c € [K]
a’'b’c’e[d]

- z z Ai (ui)a’ (ui)b' (ui)c’Wa’aWb’bWC’c

a'b'c’ i

- Z AW ) o W Tugdpy (W ) = z /11'_1/2 CHACHACHE

Hence, T' = Zili_l/zﬂi ® U; Q Ty

Transform back:
ATMEp2y Ty, = A7 2p2y T 2w Ty, = DY2YTY DY 2y, = y;
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Tensor power method for non-orthogonal factors

Theorem (Sharan-Valiant, 2017).

Consider a d-dimensional rank k tensor T = X Ui @ u; @ u;.

Let Cpax = ma_x|(ul-,uj)|, and assume ¢y < 1/k1E.
l¥]

If the initial point is randomly chosen, then with high probability the tensor power method

converge to one of the true factors (say u,) in N = O(logk + loglog d) steps, and the error at
convergence satisfies

lu; — xV|| < 0(k max{cyax 1/d}?)
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Proof setups

Tensor power method update:

We have

a; . = (xtu) =

Ait =
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Define a sequence (potential energy):
By = max|a;
o = Mma | l,0|

Pt = Cmax + ,81:2—1 + 3kaaX:8tz—1

Lemma. Forallt = 0 and foralli # 1,

|Gie| < Bt
Prove by induction on t:

t = 0: (#) trivially holds
Assume (4) holds for O, ..., t — 1
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~2 ~2
4 _Ci,1+ait 1+Zj¢1iajt 1€i j
it =

’ 1+Z]>2 j,t— 1C1,j

-  Denominator:

(1 + D2 aj,t—lclj) =1— 2207 _1C1j + Ry where [Ry| < |2j22 i t— 1C11| < k?ChaxBt1

1-x)"1=1-x+0(x? vVx<1 (by induction hypothesis)

1- z a]'2,15—1C1j +R| =1+ kaax:Bt 1t kzcmax ;L 1
j=2

«  Numerator:

~2 E ~2 ~2 E ~2 2 2
Ciy t Qjeq T Ajr_1Cij| = lcia| + Aip_q t+ Ajt—1Cij| = Cmax T Bi—1 + kCmaxBi-1
Jj#1,i JEN!

September 2, 2025 28



Putting them together:

~2
— 2 ajt-1C1j + R4

Cll+alt 1+ Z ]t 1Cl]

|alt| =
J#1,i j=22
< (Cmax + :Btz—l + kaax:Btz—l)(l + kaax:Btz—l + kzcrznaxﬂ;}—l)
< Cmax T ,Btz—l + (2 + 0(1))kcmax,8t2—1 (Cmax < 1/k1+€ and B;_1 < 1)
< Bt

If 5; < 1, by induction, (+) holds foranytandi # 1

Lemma. f; < 3nforanyt = Q(logk + loglogd). Moreover, §; < 1foranyt = 0.

Bo = Hl.lialxlai,o|

Pt = Cmax T ,Btz—l + 3kaaX,BtZ—1

| |
0.1 By <1—5/k€

by the random initialization
(proof omitted)

>

é_
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. By €(0.1,1— 5/k1*€)
We have

Bt+1 = Cmax T ,Btz + 3kcmax181:2 <1+ 4kaax),Btz
< (1 + 4kcmax) ) (1 + 4kaax)2,Bt2—1

- t
< (1 +4kcmax)1+2+22+ +2t-1 g
t
< ((1 + 4kCpmax) (1 — 5/k))"
t
< ((1 + 4/k9)(1 — 5/k9))"
< (1-1/k%)?
when ¢t > 2logk, (1 — 1/k€)?" < 0.1

log k steps

— T

| | |
N 0.1 By <1—5/k€

>
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2 B¢ € (y1,0.1) where 1 := max{cyay, 1/d}
We have
Brs1 = Cmax + BE + 3kcmaxBE < B + B + 0.3B7 < 2.5p7

Thus, B, < (2.58,)% = 0.25%" < VN whent > loglogn™ = O(loglogd)

3 Pe <M
We have
Bes1 = Cmax + BE + 3kcmaxBE <1 +n+ 0357 < 37
1 step loglogd steps log k steps

| | | |
31 N 0.1 Bo <1—5/k€

>
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Finish the proof of the Theorem

We have proven that 8; < 3n fort = Q(logk + loglogd)
Hence, by the previous Lemma,
Gie| < Be = 0()
Recall the tensor power method update rule:
t41 Yt ug) 2 aftaiz,tui 2 aiz,tui U + Xis1 aiz,tui

X = = = =
”Zi(xtrui)Zui” ”Ziaitaiz,tui” ”Ziaiz,tui” ||u1+2i>1ai2,tui“

Zosatanl < 00n®) = 2= [+ Zo aZau € 1 0Gkn?)
= z 1lel1+0(kn?

Thus, we get the desired error bound:

luy — x| = H(l —zDu -2y aday

i>1

= 0(kn*)
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Missing piece: randomized initialization creates a large
gap in correlations

Suppose x° is sampled uniformly from $4-1

Lemma. If cyay < 1/k1*€ for any constant € > 0, then with probability at least

log®@ k

1-— —

foranyi + 1,

5
|G| <1-17 Vizl

See (Sharan-Valiant 2017, Lemma 1) for the proof.

September 2, 2025 33



Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions

- We prove that the tensor power method converges fast if the factors are sufficiently “incoherent”
(Cmax < 1/k1*€)

- Up to now, we only consider the underdetermined regime (k < d)

- What about the overcomplete regime (d < k < d?)?

d = 400

k < d1.5

(@) k = 400 (b) k = 1000 (c) k = 2000 (d) k = 4000

34https://www.sitanchen.com/c5224/f24/scribe/Iec’;%_finaI.pdf
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Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions

- We prove that the tensor power method converges fast if the factors are sufficiently “incoherent”
(Cmax < 1/k1*€)

- Up to now, we only consider the underdetermined regime (k < d)

- What about the overcomplete regime (d < k < d?)?

d =400

k ~ d1.5

(e) k = 6000 (f) k = 8000

35https://www.sitanchen.com/c5224/f24/scribe/Iec3_finaI.pdf
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Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions

- We prove that the tensor power method converges fast if the factors are sufficiently “incoherent”
(Cmax < 1/k1*€)

- Up to now, we only consider the underdetermined regime (k < d)

- What about the overcomplete regime (d < k < d?)?

08

d = 400

o2 M\ >

0.20

k> d'> o

(g) k =10000 (h) kK = 12000 (i) kK = 15000

36https://www.sitanchen.com/c5224/f24/scribe/Iec’;%_finaI.pdf
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