CS 59300 – Algorithms for Data Science Classical and Quantum approaches

Lecture 2 (09/02)

Tensor Methods (II)

https://ruizhezhang.com/course_fall_2025.html

Jennrich's algorithm has good theoretical properties

- In noiseless setting, it is guaranteed to exactly recover the factors if they satisfy the conditions (1-3)
- If the tensor T has small noise T' = T + E, we can prove that Jennrich's algorithm is numerically stable (i.e., the output error is $\propto ||E||$)

The ugly truth: it's not a good idea to run Jennrich's algorithm in practice

Jennrich's algorithm is not very noise robust

(a) Noiseless case, ratio of weights equals $\frac{w_{\text{max}}}{w_{\text{min}}}$

(b) Noisy case, ratio of weights equals $\frac{w_{\text{max}}}{w_{\text{min}}}$

(Sharan-Valiant, 2017)

Jennrich's algorithm is not computationally efficient

Bottleneck steps of Jennrich's algorithm:

Set

$$M_a \coloneqq \sum_{i \in [d]} a_i T(:,:,i)$$
 and $M_b \coloneqq \sum_{i \in [d]} b_i T(:,:,i)$ $\mathcal{O}(d^3) \longrightarrow \mathcal{O}(d^2)$

- Compute $A := M_a M_b^+$ and $B := (M_a^+ M_b)^\top$
- Let \hat{u}_1 , ..., \hat{u}_k be eigenvectors of A with eigenvalues λ_1 , ..., λ_k

Suppose $T = \mathbb{E}[x^{\otimes 3}]$. Then, $M_a = \mathbb{E}[\langle a, x \rangle x x^{\top}]$ is computable in $\mathcal{O}(d^2)$ time

Jennrich's algorithm is not computationally efficient

Bottleneck steps of Jennrich's algorithm:

Set

$$M_a \coloneqq \sum_{i \in [d]} a_i T(:,:,i)$$
 and $M_b \coloneqq \sum_{i \in [d]} b_i T(:,:,i)$ $\mathcal{O}(d^3) \longrightarrow \mathcal{O}(d^2)$

- Compute $A := M_a M_b^+$ and $B := (M_a^+ M_b)^\top$
- Let $\hat{u}_1, \dots, \hat{u}_k$ be eigenvectors of A with eigenvalues $\lambda_1, \dots, \lambda_k$

The bottleneck comes from dense matrix operations

$$\mathcal{O}(d^{\omega})$$
 or $\mathcal{O}(d^3)$

 $\omega \approx 2.371$ is the fast matrix multiplication exponent (Alman et al. 2024)

Today's plan

We'll explore the iterative methods that heuristic tensor decomposition algorithms build upon:

- Gradient descent
- Power iteration
- Alternating minimization

For simplicity, let's assume *T* is a symmetric 3-tensor:

$$T = \sum_{i \in [k]} \lambda_i u_i \otimes u_i \otimes u_i$$

where $u_i \in \mathbb{R}^d$ are orthonormal vectors

At the end of this lecture, we'll see how to remove the orthogonality assumption

Gradient descent

Consider the following polynomial optimization problem:

$$\max_{\|x\|=1} p(x) \coloneqq \sum_{a,b,c} T_{abc} x_a x_b x_c = T(x,x,x) = \sum_i \lambda_i \langle u_i, x \rangle^3$$

- We assume $\{u_i\}$ are orthonormal
- In this case, you can show that $\{u_i\}$ are exactly the local maximizers of p(x) over \mathbb{S}^{d-1}
 - \rightarrow When $x \approx u_i$: $p(x) \approx \lambda_i \langle u_i, x \rangle^3 \approx \lambda_i > 0$
 - \rightarrow When $x \perp u_i \ \forall i \in [k]$: $p(x) \approx 0$

Gradient ascent:

$$x^{t} = x^{t-1} + \eta \cdot \nabla p(x)$$

$$= x^{t-1} + 3\eta \cdot T(:, x, x)$$

$$T(:, x, x)_{a} := \sum_{b,c} T_{abc} x_{b} x_{c}$$

(homework)

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot \Pi \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot \Pi \cdot T(:, x^t, x^t))$$

$$x^{t+1} = \operatorname{proj}(x^t + 3\eta \cdot \Pi \cdot T(:, x^t, x^t))$$

$$\begin{split} x^{t+1} &= \operatorname{proj} \left(x^t + 3\eta \cdot \Pi \cdot T(:, x^t, x^t) \right) \\ &= \operatorname{proj} \left(x^t + 3\eta \cdot (I - x^t(x^t)^\top) \cdot T(:, x^t, x^t) \right) \\ &= \operatorname{proj} \left(x^t + 3\eta \cdot T(:, x^t, x^t) - 3\eta \cdot x^t \sum_{abc} (x^t)_a T_{abc}(x^t)_a (x^t)_b \right) \\ &= \operatorname{proj} \left(x^t + 3\eta \cdot T(:, x^t, x^t) - 3\eta \cdot x^t \cdot T(x^t, x^t, x^t) \right) \\ &= \operatorname{proj} \left(x^t + 3\eta \cdot T(:, x^t, x^t) - 3\eta \cdot x^t \cdot T(x^t, x^t, x^t) \right) \end{split}$$
 If we take $\eta \coloneqq \frac{1}{3p(x^t)}$ as the step size,

$$x^{t+1} = \text{proj}\left(\frac{T(:, x^t, x^t)}{p(x^t)}\right) = \frac{T(:, x^t, x^t)}{\|T(:, x^t, x^t)\|}$$

Tensor generalization of the matrix power method for finding top eigenvalue!

Matrix power method

- Let $M = \sum_i \lambda_i u_i \otimes u_i \ (\equiv u_i u_i^{\mathsf{T}})$
- Let $x^0 = \sum_i a_{i,0} u_i$ be the initial point
- Matrix power method update rule:

$$x^{t+1} = \frac{Mx^t}{\|Mx^t\|} = \operatorname{proj}(M(:, x^t))$$

• We can track the correlations of x^t and each eigenvector u_i :

$$a_{i,t} := \langle x^t, u_i \rangle = \frac{1}{\|Mx^{t-1}\|} \sum_j \lambda_j a_{j,t-1} \langle u_i, u_j \rangle = \frac{\lambda_i}{\|Mx^{t-1}\|} a_{i,t-1}$$

$$\frac{a_{i,t}}{a_{i,t}} = \frac{\lambda_i}{\lambda_1} \cdot \frac{a_{i,t-1}}{a_{1,t-1}} = \left(\frac{\lambda_i}{\lambda_1}\right)^2 \frac{a_{i,t-2}}{a_{1,t-2}} \dots = \left(\frac{\lambda_i}{\lambda_1}\right)^t \frac{a_{i,0}}{a_{1,0}} \rightarrow 0 \quad \text{if} \quad \frac{\lambda_i}{\lambda_1} < 1$$

Exponential ("linear") convergence

Tensor power method

- Let $T = \sum_{i} \lambda_i u_i \otimes u_i \otimes u_i$
- Let $x^0 = \sum_i a_{i,0} u_i$ be the initial point
- Tensor power method update rule:

$$x^{t+1} = \text{proj}(T(:, x^t, x^t)) = \frac{T(:, x^t, x^t)}{\|T(:, x^t, x^t)\|}$$

• Track the the correlations of x^t and each orthonormal factor u_i :

$$a_{i,t} := \langle x^t, u_i \rangle = \frac{1}{\|T(:, x^{t-1}, x^{t-1})\|} \left\langle \sum_i \lambda_i u_i \langle x^{t-1}, u_i \rangle^2, u_i \right\rangle$$
$$= \frac{\lambda_i a_{i,t-1}^2}{\|T(:, x^{t-1}, x^{t-1})\|}$$

Tensor power method

$$a_{i,t} = \frac{\lambda_i a_{i,t-1}^2}{\|T(:, x^{t-1}, x^{t-1})\|}$$

We also compute the ratio:

$$\frac{a_{i,t}}{a_{1,t}} = \frac{\lambda_i}{\lambda_1} \frac{a_{i,t-1}^2}{a_{1,t-1}^2} = \left(\frac{\lambda_i}{\lambda_1}\right)^{1+2} \left(\frac{a_{i,t-2}}{a_{1,t-2}}\right)^{2^2} = \dots = \left(\frac{\lambda_i}{\lambda_1}\right)^{1+2+\dots+2^{t-1}} \left(\frac{a_{i,0}}{a_{1,0}}\right)^{2^t} \\
= \left(\frac{\lambda_i a_{i,0}}{\lambda_1 a_{1,0}}\right)^{2^t} \frac{\lambda_1}{\lambda_i} \to 0 \quad \text{if} \quad \frac{\lambda_i a_{i,0}}{\lambda_1 a_{1,0}} < 1$$

doubly exponential ("quadratic") convergence

- However, the probability that $\max_{i \neq 1} \frac{\lambda_i a_{i,0}}{\lambda_1 a_{1,0}} < 1$ for a random initial point is $\sim 1/k$
- But we can just use the above to argue we converge to whichever u_i maximizes $\lambda_i a_{i,0}$

Tensor power method

How to find the remaining factors?

Deflation

- Run tensor power method to find one factor \hat{u}_i
- The coefficient $\lambda_i \approx p(\hat{u}_i) = T(\hat{u}_i, \hat{u}_i, \hat{u}_i)$
- Let $T \leftarrow T p(\hat{u}_i)\hat{u}_i \otimes \hat{u}_i \otimes \hat{u}_i$, repeat

Clustering

- Use different random initial points to run tensor power method
- Let \tilde{u}_1 , ..., \tilde{u}_n be the outputs
- Run a clustering algorithm to estimate $u_1, ..., u_k$

Alternating least squares (ALS)

View tensor decomposition as a pure optimization problem:

$$\min_{\widehat{u}_1,\dots,\widehat{u}_k} \left\| T - \sum_{i \in [k]} \widehat{u}_i \otimes \widehat{u}_i \otimes \widehat{u}_i \right\|_F^2$$

In each iteration, we fix two dimensions and optimize the remaining one:

$$\hat{u}_i^{t+1} = \operatorname{proj}\left(\arg\min_{\{\hat{u}_i\}} \left\| T - \sum_{i \in [k]} \hat{u}_i \otimes \hat{u}_i^t \otimes \hat{u}_i^t \right\|_{F}^2\right)$$

just a least-squares regression

Hard to analyze, but very powerful in practice.

Rank-1 ALS is tensor power method

$$\begin{split} \arg\min_{\widehat{u}} \|T - \widehat{u} \otimes \widehat{u}^{t} \otimes \widehat{u}^{t}\|_{F}^{2} &= \arg\min_{\widehat{u}} \sum_{abc} (T_{abc} - (\widehat{u})_{a} (\widehat{u}^{t})_{b} (\widehat{u}^{t})_{c})^{2} \\ &= \arg\min_{\widehat{u}} \sum_{abc} T_{abc}^{2} - 2T_{abc} (\widehat{u})_{a} (\widehat{u}^{t})_{b} (\widehat{u}^{t})_{c} + (\widehat{u})_{a}^{2} (\widehat{u}^{t})_{b}^{2} (\widehat{u}^{t})_{c}^{2} \\ &= \arg\min_{\widehat{u}} \sum_{a} -2(\widehat{u})_{a} \sum_{bc} T_{abc} (\widehat{u}^{t})_{b} (\widehat{u}^{t})_{c} + (\widehat{u})_{a}^{2} \sum_{bc} (\widehat{u}^{t})_{b}^{2} (\widehat{u}^{t})_{c}^{2} \\ &= \arg\min_{\widehat{u}} \sum_{a} -2(\widehat{u})_{a} T(:, \widehat{u}^{t}, \widehat{u}^{t}) + (\widehat{u})_{a}^{2} \end{split}$$

Therefore, the lease-squares solution is $\hat{u} = T(:, \hat{u}^t, \hat{u}^t)$, and

$$\hat{u}^{t+1} = \operatorname{proj}(T(:, \hat{u}^t, \hat{u}^t))$$

Tensor power method update rule

Removing the orthogonality condition

In our previous discussions, we assume that $T = \sum_i \lambda_i u_i \otimes u_i \otimes u_i$ and $\{u_i\}$ are orthonormal vectors. What if they are non-orthogonal but only linearly independent?

We'll see two solutions:

- 1. Whitening
- 2. Directly analyzing the tensor power method for non-orthogonal factors

Whitening

In many practical applications, we not only get access to T, but also to the following matrix:

$$M = \sum_{i} \lambda_i u_i u_i^{\mathsf{T}}$$

We can do the following procedure to orthogonalize the factors:

- Let $M = VDV^{\mathsf{T}}$ be the eigendecomposition of M, where $V \in \mathbb{R}^{d \times k}$ and $D \in \mathbb{R}^{k \times k}$
- Define $W \coloneqq VD^{-1/2}$ and $\tilde{u}_i \coloneqq \sqrt{\lambda_i}W^{\top}u_i \in \mathbb{R}^k$
- Then, we can check that

$$\sum_{i=1}^{k} \tilde{u}_{i} \tilde{u}_{i}^{\mathsf{T}} = \sum_{i=1}^{k} \lambda_{i} W^{\mathsf{T}} u_{i} u_{i}^{\mathsf{T}} W = W^{\mathsf{T}} M W = D^{-1/2} V^{\mathsf{T}} V D V^{\mathsf{T}} V D^{-1/2} = D^{-1/2} D D^{-1/2} = I$$

• It implies that $\{\tilde{u}_i\}$ are orthonormal

Whitening

- $\{\tilde{u}_i \coloneqq \sqrt{\lambda_i} W^{\mathsf{T}} u_i\}$ are orthonormal
- Define a new tensor $T' := T(W, W, W) \in \mathbb{R}^{k \times k \times k}$ such that

$$\begin{split} T'_{abc} &= \sum_{a'b'c' \in [d]} T_{a'b'c'} W_{a'a} W_{b'b} W_{c'c} \quad \forall a,b,c \in [k] \\ &= \sum_{a'b'c'} \sum_{i} \lambda_i \, (u_i)_{a'} (u_i)_{b'} (u_i)_{c'} W_{a'a} W_{b'b} W_{c'c} \\ &= \sum_{i} \lambda_i (W^\top u_i)_a (W^\top u_i)_b (W^\top u_i)_c = \sum_{i} \lambda_i^{-1/2} (\tilde{u}_i)_a (\tilde{u}_i)_b (\tilde{u}_i)_c \end{split}$$

- Hence, $T' = \sum_i \lambda_i^{-1/2} \tilde{u}_i \otimes \tilde{u}_i \otimes \tilde{u}_i$
- Transform back:

$$\lambda_i^{-1/2} D^{1/2} V^{\mathsf{T}} \tilde{u}_i = \lambda_i^{-1/2} D^{1/2} V^{\mathsf{T}} \lambda_i^{1/2} W^{\mathsf{T}} u_i = D^{1/2} V^{\mathsf{T}} V D^{-1/2} u_i = u_i$$

Tensor power method for non-orthogonal factors

Theorem (Sharan-Valiant, 2017).

Consider a d-dimensional rank k tensor $T = \sum_{i \in [k]} u_i \otimes u_i \otimes u_i$.

Let
$$c_{\max} = \max_{i \neq j} |\langle u_i, u_j \rangle|$$
, and assume $c_{\max} \leq 1/k^{1+\epsilon}$.

If the initial point is randomly chosen, then with high probability the tensor power method converge to one of the true factors (say u_1) in $N = \mathcal{O}(\log k + \log \log d)$ steps, and the error at convergence satisfies

$$||u_1 - x^N|| \le \mathcal{O}(k \max\{c_{\max}, 1/d\}^2)$$

Proof setups

Tensor power method update:

$$x^{t} = \frac{\sum_{i} \langle x^{t-1}, u_{i} \rangle^{2} u_{i}}{\left\| \sum_{i} \langle x^{t-1}, u_{i} \rangle^{2} u_{i} \right\|} = \frac{\sum_{i} a_{i,t-1}^{2} u_{i}}{\left\| \sum_{i} a_{i,t-1}^{2} u_{i} \right\|}$$

 $a_{i,t} \coloneqq \langle x^t, u_i \rangle$

We have

$$\begin{cases} a_{i,t} = \langle x^t, u_i \rangle = \frac{\sum_j a_{j,t-1}^2 \langle u_j, u_i \rangle}{\|\sum_j a_{j,t-1}^2 u_j\|} = \frac{a_{1,t-1}^2 \sum_j \hat{a}_{j,t-1}^2 c_{i,j}}{\|\sum_j a_{j,t-1}^2 u_j\|} \\ a_{1,t} = \frac{a_{1,t-1}^2 \sum_j \hat{a}_{j,t-1}^2 c_{1,j}}{\|\sum_j a_{j,t-1}^2 u_j\|} \\ \hat{a}_{i,t} = \frac{a_{i,t}}{a_{1,t}} = \frac{\sum_j \hat{a}_{j,t-1}^2 c_{i,j}}{\sum_j \hat{a}_{i,t-1}^2 c_{1,j}} = \frac{c_{i,1} + \hat{a}_{i,t-1}^2 + \sum_{j \neq 1,i} \hat{a}_{j,t-1}^2 c_{i,j}}{1 + \sum_{j \geq 2} \hat{a}_{i,t-1}^2 c_{1,j}} \end{cases}$$

 $\widehat{a}_{i,t} \coloneqq \frac{a_{i,t}}{a_{1,t}}$

Define a sequence (potential energy):

$$\begin{cases} \beta_0 = \max_{i \neq 1} |\hat{a}_{i,0}| \\ \beta_t = c_{\max} + \beta_{t-1}^2 + 3kc_{\max}\beta_{t-1}^2 \end{cases}$$

Lemma. For all $t \ge 0$ and for all $i \ne 1$,

$$\left|\hat{a}_{i,t}\right| \le \beta_t \tag{\bigstar}$$

Prove by induction on t:

- t = 0: (\spadesuit) trivially holds
- Assume (\bigstar) holds for $0, \dots, t-1$

$$\hat{a}_{i,t} = \frac{c_{i,1} + \hat{a}_{i,t-1}^2 + \sum_{j \neq 1,i} \hat{a}_{j,t-1}^2 c_{i,j}}{1 + \sum_{j \geq 2} \hat{a}_{j,t-1}^2 c_{1,j}}$$

Denominator:

$$\left(1 + \sum_{j \ge 2} \hat{a}_{j,t-1}^2 c_{1j}\right)^{-1} = 1 - \sum_{j \ge 2} \hat{a}_{j,t-1}^2 c_{1j} + R_1 \text{ where } |R_1| \le \left|\sum_{j \ge 2} \hat{a}_{j,t-1}^2 c_{1j}\right|^2 \le k^2 c_{\max}^2 \beta_{t-1}^4$$

$$(1 - x)^{-1} = 1 - x + \mathcal{O}(x^2) \ \forall x < 1$$
 (by induction hypothesis)

$$\left|1 - \sum_{j \ge 2} \hat{a}_{j,t-1}^2 c_{1j} + R_1\right| \le 1 + k c_{\max} \beta_{t-1}^2 + k^2 c_{\max}^2 \beta_{t-1}^4$$

Numerator:

$$\left| c_{i1} + \hat{a}_{i,t-1}^2 + \sum_{j \neq 1,i} \hat{a}_{j,t-1}^2 c_{ij} \right| \leq |c_{i1}| + \hat{a}_{i,t-1}^2 + \left| \sum_{j \neq 1,i} \hat{a}_{j,t-1}^2 c_{ij} \right| \leq c_{\max} + \beta_{t-1}^2 + kc_{\max} \beta_{t-1}^2$$

Putting them together:

$$\begin{aligned} \left| \hat{a}_{i,t} \right| &= \left| c_{i1} + \hat{a}_{i,t-1}^2 + \sum_{j \neq 1,i} \hat{a}_{j,t-1}^2 c_{ij} \right| \cdot \left| 1 - \sum_{j \geq 2} \hat{a}_{j,t-1}^2 c_{1j} + R_1 \right| \\ &\leq (c_{\max} + \beta_{t-1}^2 + k c_{\max} \beta_{t-1}^2) (1 + k c_{\max} \beta_{t-1}^2 + k^2 c_{\max}^2 \beta_{t-1}^4) \\ &\leq c_{\max} + \beta_{t-1}^2 + \left(2 + o(1) \right) k c_{\max} \beta_{t-1}^2 & (c_{\max} \leq 1/k^{1+\epsilon} \text{ and } \beta_{t-1} < 1) \\ &< \beta_t \end{aligned}$$

If $\beta_t < 1$, by induction, (\blacklozenge) holds for any t and $i \neq 1$

Lemma. $\beta_t < 3\eta$ for any $t = \Omega(\log k + \log \log d)$. Moreover, $\beta_t < 1$ for any $t \ge 0$.

$$\begin{cases} \beta_0 = \max_{i \neq 1} |\hat{a}_{i,0}| \\ \beta_t = c_{\max} + \beta_{t-1}^2 + 3kc_{\max}\beta_{t-1}^2 \end{cases}$$

by the random initialization (proof omitted)

1. $\beta_t \in (0.1, 1 - 5/k^{1+\epsilon})$

We have

$$\beta_{t+1} = c_{\max} + \beta_t^2 + 3kc_{\max}\beta_t^2 \le (1 + 4kc_{\max})\beta_t^2$$

$$\le (1 + 4kc_{\max}) \cdot (1 + 4kc_{\max})^2 \beta_{t-1}^2$$

$$\vdots$$

$$\le (1 + 4kc_{\max})^{1+2+2^2+\dots+2^{t-1}} \beta_0^{2^t}$$

$$\le ((1 + 4kc_{\max})(1 - 5/k^{\epsilon}))^{2^t}$$

$$\le ((1 + 4/k^{\epsilon})(1 - 5/k^{\epsilon}))^{2^t}$$

$$\le (1 - 1/k^{\epsilon})^{2^t}$$

when $t \ge 2 \log k$, $(1 - 1/k^{\epsilon})^{2^t} < 0.1$

2. $\beta_t \in (\sqrt{\eta}, 0.1)$ where $\eta := \max\{c_{\max}, 1/d\}$

We have

$$\beta_{t+1} = c_{\max} + \beta_t^2 + 3kc_{\max}\beta_t^2 \le \beta_t^2 + \beta_t^2 + 0.3\beta_t^2 \le 2.5\beta_t^2$$

Thus, $\beta_t \le (2.5\beta_0)^{2^t} = 0.25^{2^t} < \sqrt{\eta} \text{ when } t > \log \log \eta^{-1} = \mathcal{O}(\log \log d)$

3.
$$\beta_t \leq \sqrt{\eta}$$

We have

$$\beta_{t+1} = c_{\text{max}} + \beta_t^2 + 3kc_{\text{max}}\beta_t^2 \le \eta + \eta + 0.3\beta_t^2 \le 3\eta$$

Finish the proof of the Theorem

- We have proven that $\beta_t \leq 3\eta$ for $t = \Omega(\log k + \log\log d)$
- Hence, by the previous Lemma,

$$|\hat{a}_{it}| \le \beta_t = \mathcal{O}(\eta)$$

Recall the tensor power method update rule:

$$x^{t+1} = \frac{\sum_{i} \langle x^{t}, u_{i} \rangle^{2} u_{i}}{\left\| \sum_{i} \langle x^{t}, u_{i} \rangle^{2} u_{i} \right\|} = \frac{\sum_{i} a_{1,t}^{2} \hat{a}_{i,t}^{2} u_{i}}{\left\| \sum_{i} a_{1,t}^{2} \hat{a}_{i,t}^{2} u_{i} \right\|} = \frac{\sum_{i} \hat{a}_{i,t}^{2} u_{i}}{\left\| \sum_{i} \hat{a}_{i,t}^{2} u_{i} \right\|} = \frac{u_{1} + \sum_{i>1} \hat{a}_{i,t}^{2} u_{i}}{\left\| u_{1} + \sum_{i>1} \hat{a}_{i,t}^{2} u_{i} \right\|}$$

Thus, we get the desired error bound:

$$||u_1 - x^{t+1}|| = \left| \left| (1 - z^{-1})u_1 - z^{-1} \sum_{i > 1} \hat{a}_{i,t}^2 u_i \right| \right| = \mathcal{O}(k\eta^2)$$

Missing piece: randomized initialization creates a large gap in correlations

Suppose x^0 is sampled uniformly from \mathbb{S}^{d-1}

Lemma. If $c_{\max} < 1/k^{1+\epsilon}$ for any constant $\epsilon > 0$, then with probability at least $1 - \frac{\log^{O(1)} k}{\iota^{\epsilon}}$, for any $i \neq 1$,

$$\left|\hat{a}_{i,0}\right| \le 1 - \frac{5}{k^{\epsilon}} \quad \forall i \ne 1$$

See (Sharan-Valiant 2017, Lemma 1) for the proof.

Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions
- We prove that the tensor power method converges fast if the factors are sufficiently "incoherent" $(c_{\rm max} < 1/k^{1+\epsilon})$
- Up to now, we only consider the underdetermined regime $(k \le d)$
- What about the overcomplete regime $(d < k \le d^2)$?

https://www.sitanchen.com/cs224/f24/scribe/lec3_final.pdf

Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions
- We prove that the tensor power method converges fast if the factors are sufficiently "incoherent" $(c_{\rm max} < 1/k^{1+\epsilon})$
- Up to now, we only consider the underdetermined regime $(k \le d)$
- What about the overcomplete regime $(d < k \le d^2)$?

d = 400

 $k \simeq d^{1.5}$

Recap

- Today, we see the key ideas and some theory behind the heuristic approaches for tensor decompositions
- We prove that the tensor power method converges fast if the factors are sufficiently "incoherent" $(c_{\rm max} < 1/k^{1+\epsilon})$
- Up to now, we only consider the underdetermined regime $(k \le d)$
- What about the overcomplete regime $(d < k \le d^2)$?

https://www.sitanchen.com/cs224/f24/scribe/lec3_final.pdf